Blog » Fundamentals of Machine Learning for Healthcare

Fundamentals of Machine Learning for Healthcare

Online Course. This course will introduce the fundamental concepts and principles of machine learning as it applies to medicine and healthcare. We will explore machine learning approaches, medical use cases, metrics unique to healthcare, as well as best practices for designing, building, and evaluating machine learning applications in healthcare. The course will empower those with non-engineering backgrounds in healthcare, health policy, pharmaceutical development, as well as data science with the knowledge to critically evaluate and use these technologies.

Machine learning and artificial intelligence hold the potential to transform healthcare and open up a world of incredible promise. But we will never realize the potential of these technologies unless all stakeholders have basic competencies in both healthcare and machine learning concepts and principles.

The course will empower those with non-engineering backgrounds in healthcare, health policy, pharmaceutical development, as well as data science with the knowledge to critically evaluate and use these technologies.

What You Will Learn

  • Define important relationships between the fields of machine learning, biostatistics, and traditional computer programming.
  • Learn about advanced neural network architectures for tasks ranging from text classification to object detection and segmentation.
  • Learn important approaches for leveraging data to train, validate, and test machine learning models.
  • Understand how dynamic medical practice and discontinuous timelines impact clinical machine learning application development and deployment.

Syllabus

Week 1: Why machine learning in healthcare?

Week 2: Concepts and Principles of machine learning in healthcare part 1

Week 3: Concepts and Principles of machine learning in healthcare part 2

Week 4: Evaluation and Metrics for machine learning in healthcare

Week 5: Strategies and Challenges in Machine Learning in Healthcare

Week 6: Best practices, teams, and launching your machine learning journey

Week 7: Course Conclusion

Co-author: Geoffrey Angus

Contributing Editors:

  • Mars Huang
  • Jin Long
  • Shannon Crawford
  • Oge Marques

About the AI in Healthcare Specialization

Artificial intelligence (AI) has transformed industries around the world, and has the potential to radically alter the field of healthcare. Imagine being able to analyze data on patient visits to the clinic, medications prescribed, lab tests, and procedures performed, as well as data outside the health system — such as social media, purchases made using credit cards, census records, Internet search activity logs that contain valuable health information, and you’ll get a sense of how AI could transform patient care and diagnoses.

In this specialization, we’ll discuss the current and future applications of AI in healthcare with the goal of learning to bring AI technologies into the clinic safely and ethically. This specialization is designed for both healthcare providers and computer science professionals, offering insights to facilitate collaboration between the disciplines. CME Accreditation The Stanford University School of Medicine is accredited by the Accreditation Council for Continuing Medical Education (ACCME) to provide continuing medical education for physicians. View the full CME accreditation information on the individual course FAQ page.

The Stanford University School of Medicine is accredited by the Accreditation Council for Continuing Medical Education (ACCME) to provide continuing medical education for physicians. Visit the FAQs below for important information regarding 1) Date of original release and Termination or expiration date; 2) Accreditation and Credit Designation statements; 3) Disclosure of financial relationships for every person in control of activity content.

Start Learning Today

Financial aid available

  • This Course Plus the Full Specialization
  • Shareable Certificates
  • Self-Paced Learning Option
  • Course Videos & Readings
  • Practice Quizzes
  • Graded Assignments with Peer Feedback
  • Graded Quizzes with Feedback
  • Graded Programming Assignments

See More Machine Learning courses

See also...

Writing in the Sciences Online Training Course for health economists

Writing in the Sciences

Online Course. We, health economists, are “number” persons. Most of us don’t like writing. Yet, ... Read more

LinkedIn Blueprint: Become An Influencer an Online Course for Health Economists

LinkedIn Blueprint: Become An Influencer

Online Course. LinkedIn Hacks: My LinkedIn Path To 1000+ Connections, Top 1% Profile Views In ... Read more

Excel Charts: Visualization Secrets for Impressive Charts Online Course for Health Economists

Excel Charts: Visualization Secrets for Impressive Charts

Online Course. Gain Highly Advanced Excel Skills to Create Impressive Excel Graphs for your Management ... Read more

Introduction to Stata - Hands on! Online Course for Health Economists

Introduction to Stata – Hands-on!

Online Course. All you need to know to start using Stata to analyze your data. ... Read more

Excel VBA Programming - The Complete Guide Online Course for health Economists

Excel VBA Programming – The Complete Guide

Online Course. Automate your Excel workflow, accelerate your productivity, and master the fundamentals of programming ... Read more

The Python Bible | Everything You Need to Program in Python Online Course for Health Economists

The Python Bible – Everything You Need to Program in Python

Online Course. Build 11 Projects and go from Beginner to Pro in Python. If you ... Read more

Categories

Tags